
Computational Sciences Division
M/S 269-2

NASA Ames Research Center

Moffett Field, CA 94301

Autonomy and Robotics Group

Center of Excellence in

Information Technology

NASA Ames Research Center

-....__deling with
_ __

vingstone
2L _. - - " -_"

DRAFT ONLY - We are redesigning the Livingstone modeling language. This rough document covers the

old Lisp-like modeling language used on Deep Space 1 and will likely not be maintained.

Contact person: kurien@ptolemy.arc.nasa.gov

Table of Contents

Introduction to MPL ... 3

Mqdqle Definition: Defmodule .. 8

Macros for qeneratinq wffs .. 9

In_|_ntiation 11

MPL Synt_x ... 12

Commands and Monitors ... 14

A very simple switch model .. 16.

Tools and Hints for working with models ... 20

Introduction to MPL
MPL is the language with which a modeler describes a system to be diagnosed or controlled by
Livingstone. MPL is used to specify what are the components of the system, how they are interconnected,
and how they behave both nominally and when failed. Component behavioral models used by Livingstone
are described by a set of propositional, well-formed formula (wff). An understanding of well-formed

formula, primitive component types specified through defcomponent, and device structure specified by
de fmodule, is essential to understanding of MPL.

This document describes:

• well-formed formula (wff): The basis for describing the behavior of a component in a system

• defvalues: Specifies the domain (legal values) of a variable

• defcomponent: Defines the modes, behaviors and mode transitions for primitive components

• defmodule: Defines composite devices, consisting of interconnected components

• defrelation: A macro mechanism for expanding a complex wff according to the value of an

argument

• forall: An iteration construct used to expand a wff or relation on a set of arguments

• defsymbol-expansion: A mechanism for naming a collection of symbols (eg the name of all valves
in the system)

Well-formed Formula (wffs)

Livingstone uses propositional formulae to describe the behavior of components in particular modes. A

proposition is a statement that has a truth assignment of true or false. For example, the proposition "Palo
Alto is in California" istrue, and the proposition "Tokyo is in California" is false.

While a proposition can be any statement that can be assigned a truth value, propositions in Livingstone are
generally statements about the value of some variable. The variable is in turn some attribute of a device in

the system being modeled. The statements "the flow through the valve is low" or "the power switch reports
that it is on" are examples. A variable in MPL is of the form:

variable ::= (attribute component)

where component is the name of some component or module in the model (discussed below) and attribute
is the name of an attribute of that component or module. If we have a component named hydrogen-
valve and it has been created to have an attribute called flow, we would refer to the variable

representing the flow through this valve as:

(flow hydrogen-valve)

Finite Domains

Livingstone is based upon propositional logic. It does not know about integers, real numbers or arithmetic
but instead works with finite domains. A finite domain specifies a finite number of values for a variable.
Quite often, each value in the finite domain represents a range of values on the real number line. For
example, the flow through the hydrogen valve may be low, nominal or high. Other finite domains may

represent truly discrete values. A switch position sensor returns only the values on and off. A new finite
domain can be introduced with the form

(de fva Iues domain-name values)

where domain-name is the name of the new finite domain and values is a list of the values within a domain.

For example, to model flows as low, nominal or high, one could use the form

(defvalues flow-values (low nominal high))

This specifies to Livingstone that any variable whose type is flow-values can take on the values low,
nominal or high. In fact this will specify that the variable must have exactly one of these values at all times,

though at any given time there may not be enough information to determine which value that is. When

defining a component, one can specify the name and types of the attributes in a form such as:

(defcomponent valve (?name)

(:attributes

((flow ?name) :type flow-values)))

This form, which is discussed in detail below, specifies that the valve named ?name has an attribute named
(flow ?name) and it'sdomain isflow-values. Ifwe createa valvenamed hydrogen-valve,

thenthevariable(flow hydrogen-valve) can takeon thevalueslow,nominal and high.Inthe

language of propositions, this means the following propositions have been created, and can be assigned a
truth value: "(flow hydrogen-valve) is low", "(flow hydrogen-valve) is nominal",

"(flow hydrogen-valve) ishigh"

Internally,Livingstonerepresentstheproposition" (flow hydrogen-va Ive) islow" as(low (flow

hydrogen-valve)). For a number of reasons, including that this is hard to read, one should use the form:

(= (flow hydrogen-valve) low)

It's critical to keep in mind that this is a proposition, which may be true or false, and not an assignment,
which actually changes the value of the variable representing the flow. Propositional formulae are
constructed by combining propositions using the logical connectives such as AND, OR and NOT. For

example, the logical formula

(OR (= (flow hydrogen-valve) nominal) (= (flow hydrogen-valve) high))

is true as long as the value of the flow is not low. The actual value of the flow variable is not affecfed by
evaluating the truth of this formula.

Below is the syntax of a propositional, well-formed formula or wff ("woof"),:

wff ::= (AND wff+)

(OR wff+)

(NOT wff)

(IMPLIES wff wff)

(IFF wff wff)

(WHEN wff wff)

(UNLESS wff wff)

(IF wff wff wff)

proposi tion

Below aresome examples ofwffs.Since (flow hydrogen-valve) must have exactly one

value at a time, the following wffs are always true. Once one has introduced

more than one variable, substantially more interesting wffs can be created to describe how a device
behaves.

(OR (= (flow hydrogen-valve) low)

(= (flow hydrogen-valve) nominal)

(= (flow hydrogen-valve) high))

(implies (= (flow hydrogen-valve) low)

(not (= (flow hydrogen-valve) nominal))

Constraining Two Quantities to be Equal

Suppose one has a hydrogen tank, a hydrogen valve and a rocket engine, all connected in series. Neglecting
the possibility of leaky pipes for the moment, the flow through all components will be equal. If each of the

flows has the domain flow-values, then we could constrain the valve and tank flows to be equal by writing
a wff of the following form. The connector iff is a standard abbreviation for "if and only if".

(and (iff (= (flow hydrogen-valve) high) (= (flow hydrogen-tank) high)

(iff (= (flow hydrogen-valve) low) (= (flow hydrogen-tank) low))

(iff (= (flow hydrogen-valve) nominal) (= (flow hydrogen-tank)
nominal)))

This wff specifies that if the value of one variable is high the other must be high, and so on. If for example
the hydrogen tank flow was measured from the environment, that would constrain the flow at the hydrogen
valve. To avoid the need to type out and maintain such long formulae, Livingstone allows the = operator to
be applied to two quantities such as (flow hydrogen-valve) and (flow hydrogen-tank).
The wff

(= (flow hydrogen-valve) (flow hydrogen-tank))

expands to the wff shown above, which constrains the two quantities to have the same value. Including =,
the full wff syntax is

wff ::= (AND wff+)

(OR wff+)

(NOT wff)

Review

(IMPLIES wff wff)

(IFF wff wff)

(WHEN wff wff)

(UNLESS wff wff)

(IF wff wff wff)

(= variable value)

(= variable variable)

• The devices in a system are modeled with components. How components are created is discussed
below

• A component has attributes

• Each attribute has a domain that specifies the values the attribute may take on

• A new domain is created with defvalues

• The statement that an attribute has a certain value is a proposition, which may be true or false

• Propositions may be combined into formulae using logical connectors such as OR and IMPLIES.
These formulae describe the behavior of a device

- = can be used to represent the proposition "this variable has this value"

• = can be used to constrain two quantities to be equal

Component Definition: Defcomponent

Livingstone models component behavior in terms of a set of modes and transitions between these modes.

defcomponent is used to provide a specification for the behavior of a class of components that can be
instantiated according to the device that is being modeled. This section first defines component definition
and follows with component instantiation.

Definition

Defcomponent specifies creates a new type of component. It specifies the attributes and attribute types, its
modes, its behavior within modes, and its transition behavior between modes for all components that are
created of this type. In general the syntax of a DEFCOMPONENT definition is as follows:

(defcomponent type (args)

[(:attributes attribute-spec*

[(:inputs attribute-spec*)]

[(:outputs attribute-spec*)]

[(:ports attribute-spec*)]

)]

[(:declarations wff)]

[(:background

[:model wff]

[:initial-mode mode-name]

[:initially wff])]

(mode-name

:type <:ok-mode] :fault-mode>

[:probability number]

[:value number]

[:model wff]

[:transitions <transition-spec>])*

)

See appendix MPL BNF for definitions of [], *, I and +

Tyre and Ar_

tzoe is a symbol naming the new component type. For example, this could be valve or power-
distribution-unit.

args is a list of arguments. When a component of this type is created, actual values will be provided for

the arguments and substituted into the formulas in the component definition. By convention, the names
of the arguments begin with "?" and the first argument is "?name", the name of the component being
created. For example, the following code

(defcomponent heater (?name)

o o .)

defines a component of type heater with the argument ?name. When a heater is created, the user will
specify a value for ?name which will be substituted into the component definition. The argument

?name in particular will be used in the attributes to ensure the propositions we introduce about this
heater's attributes are named for the heater.

:Attributes. :lnouts. :Outouts or :Ports

All of these fields declare the attributes of the component as well as the domain of each attribute. Any
combination of :attributes, :inputs, :outputs or :ports may be used. They are synonymous and the
distinction is only provided for clarity. Each attribute field takes a list of attributes definitions. Each
definition names the attribute and specifies its domain:

Attribute_def : := ((attname ?name) :type domain-name))

An example is

((power-input ?name) :type on-off-values))

Note that the name of the attribute is (flow ?name), where ?name will be substituted when a

component of this type is created. See section Defvalues for using defvalues to define attribute types
and their values. To define the valve component type to have a flow attribute and a pressure attribute,
the following form could be used:

(defcomponent heater (?name)
(:attributes

((power-input ?name)

:type on-off-values

:documentation "Is the heater getting power?")

((reset-cmd ?name)

:type reset-cmd

:documentation

"Command to reset the circuit breaker")

((thermal-output ?name)

:type sign-values

:documentation "Is the heater heating?"))

o . °)

this wff will define the expressions that can appear as propositions within the wffs that model the

component's behavior.

:Declarations

Define declarations section

:Background

Define background section

Modes

mode-name is a symbol and must be one of the modes defined for the component. As indicated by the

*, a component can have 0 or more modes. The modes of the component will be partitioned into two

types of modes. :ok-mode defines the different nominal modes of the component. :fault-mode on the

other hand defines the non-norrunal or failure modes of the component. Each failure mode has a prior

probability associated with failing into that mode.

Each mode has a behavior, which is enforced as long as the component is in that mode. This behavior

is specified by a wff in the :model and usually will use some of the constructs identified in section
WFF.

For example, the heater component is a component of two modes. The first mode: ok is a normal

operating mode of the component and is modeled by the following code:

(defcomponent heater

(:attributes

(on

:type :ok-mode

:documentation

:model (if (on

° . .)

(?name)

. o °)

"working -> produces desired heat output"

(power-input ?name))

(positive (thermal-output ?name))

(zero (thermal-output ?name))))

The ok mode can be seen by the keyword : type, with value ok-mode. The behavior of this mode is

specified by a wff in the : mode], field. For example, in the ok mode the wff:

(if (on (power-input ?name))

(positive (thermal-output ?name))

(zero (thermal-output ?name)))

saysthatiftheheaterisonit _oducespositiveheat;_herwise, itproduces _roheat. Thesecond

mode oftheheater, a failu_ modenamedunexpec_dly-offcanbeseeninthe_llowingcode:

(defcomponent heater (?name)

(:attributes ...)

(ok . . .)

(blown-circuit-breaker

:type :fault-mode
:documentation "Blown

:model (zero (temperature

:transitions ((reset-cb

:when (on

:next ok

:cost i)))
• • o)

internal circuit breaker."

(thermal-output ?name)))

(reset-cmd ?name))

The DEFMODULE is a macro used to define the structure of a collection of components. Like
DEFCOMPONENT, DEFMODULE is used to define a generic type of a module, i.e., a specification
for how a parameterized set of components should be hooked up. The syntax for the DEFMODULE
forms is the following:

(defmodule <device-name> <parameters>
(:structure

(type args) *

)

[(:facts wff)]

)

where device-name is an symbol denoting the name of the device, parameters is a list of symbols, each
beginning with "?", that parameterize this definition type is a one of the types of defined components

or modules, arg is a list of symbols that define the particular instance of the component/module type.
In a module definition, the symbols may also be variables that occur in the parameters list wffis a well
formed formula as defined above.

The following examples creates a latched-thruster module, which can be turned on or off.

(defmodule latched-thruster (?branch ?index)
(:structure

(thrust-valve (thrstr-vlv ?branch ?index))

(thruster (thrstr ?branch ?index))

(flow-connection (fuel-input (thrstr ?branch ?index))

(output (thrstr-vlv ?branch ?index)))))

The module's structure is specified by a wff in the : structure field. The latched-thruster is defined

by specifying three components defined using defcomponent.

Module Definition: Defmodule

The failure mode can be seen by the keyword : type, with value :fault-mode has a :probability
of .00005 which together with the probability of the ok-mode sums to I. As in the previous example,

the behavior of this mode is specified by a wff in the :model field. And as can be seen is the simple
statement:

(zero (temperature (thermal-output ?name)))

Finally, a model specifies conditions under which a component may transition from one mode to
another. For example, the mode unexpectedly-off, has one transition, which is called on-resets:

:transitions ((reset-cb

:when (on (power-input ?name))
:next ok

:cost i))

This transition specifies that if the heater is in the blown-circuit-breaker mode and reset-cmd on, then
the heater transitions to the ok mode. Transitions can incur a cost; in this example the cost is 1. In
addition to specifying transitions, a component can spontaneously transition to a failure mode. For
example, the heater may spontaneously transition from ok to blown-circuit-breaker. However, it can

only transition from a failure mode to an okay-mode through one of the explicitly declared transitions.

Thefirst two defined components: a thruster-valve and a thruster correspond to primitive components,
while the third component flow-connection corresponds to the phyiscal lines that connect the two
primitive components. This third component is also defined using defcomponent. The behavior of a

module consists of the conjunction of the behaviors (wffs) produced by the components and
connections in : structure. Added to this conjunction is additional behavior for that module

specified by a wff in the : facts field.

The concept of connection components, i.e. 1 mode, prior probability = 1, has not been defined.

Macros for generatina wffs
There are three macros, that make it easy to specify wffs: defrelation which defines new relations,

defvalues which defines new types, and forall, which allows wffs to be constructed through iteration.

Relation Definition

Two constructs are provided to allow the user to construct relations in LMPL. The lust construct is the

defvalue macro which defines a new unary relation that ensures that its argument has exactly one of
a discrete set of values. The second construct is the defrelation macro which is used to define

schemas that instantiate to the well-formed formula in the body of the defrelation. It is used to define

binary predicates that order values constructed via defvalues. In addition it used to define procedural
constructs such as implication. We believe that a liberal use of defrelation is essential to good
modelling.

Defvalues

The syntaxofdefvaluesisasfollows:

(defvalues domain-name values)

where domain-name is a symbol denoting the name of the relation that defines the domain consisting
exactly of values and values is a list of symbols, denoting predicates specifying allowed values within
that domain. For example,

(defvalues sign-values (negative zero positive))

defines the unary relation of name sign-values that ensures that any variable of type sign-values will
have exactly one of the values positive, negative or zero. The use of these relations to type declare
variables required for component behavior definition can be seen in Section _ref{ Def:component }. The
instantiation of a type declaration can be seen in Section kref{instantiatedefvalues }.

Defrelations

The defrelation macro allows the user to define a macro that expands into a WFF. The syntax of a
DEFRELATION definition is as follows:

(defrelation relation-name parameters

wff)

where relation-name is a symbol denoting the name of the relation, parameters is a list of symbols,
each beginning with "?", that parameterize this definition and wffis a well formed formula as defined
above. For example, the implication relation, (A implies B), is equivalent to the wff (not A or B).
Implication is defined using defrelation as follows:

(defrelation IMPLIES (wffa wffb)

(OR (NOT wffa) wffb))

The equivalence relation IFF can then be defined from the implication relation as follows:

(defrelation IFF (wffa wffb)

(OR (NOT wffa) wffb))

Forall

The above constructs simplify the modeling process and support easy plug and play by providing
mechanisms for modularizing pieces of formula (through deft'elations and defvalues), as well as

structure and data abstraction (through defmodule).

In addition, there are often a variety of devices each substantially different, but which are assembled
together through common pieces. For example the behaviors of Cassini's drivers MID, MEVD,
BPLVD, and HeLVD, are similar in that they drive a common class of devices -- valves, heaters,
sensors -- although they each drive a different mixture and number of these devices. The foreach

construct makes it easy to automatically assemble together these common pieces of behavior into a
single device.

For example, to generate the MPD, MEVD, BPLVD, and HeLVD we can define a component type
propulsion-driver, whose parameter values specify the different devices being driven, according to

type.

(defcomponent Propulsion-Driver

(?name ?latch-valves ?valves ?heaters ?rcs-branches

?sensed-temperatures ?sensed-positions)

(:attributes
(and (forall ?latch-valve in ?latch-valves

(driver-latch-valve-attributes ?name ?latch-valve))

....)))

Here the parameter ?latch-valves binds to a list of valves. The forall construct instantiates the

appropriate wffs for each valve specified on the list. To do this ?latch-valve is successively bound to
each element of the list denoted by ?latch-valves. The body of the forall is instantiated for each binding

of ?latch-valve, producing a wff. What is generated is the conjunction (AND) of these wffs.

Next a specific driver type, such as the MPD, is easily assembled as an instance of propulsion-driver.

(defmodule MPD (?name ?iv ?cbh ?rcs-branch ?cbh-temp)

(:structure

(propulsion-driver ?driver-name

(?Iv)

()

(?cbh)

(?rcs-branch)

(?cbh- temp)

())))

The syntax of forall is as follows.

(feral i <parameter> <1ist-parameter>)

wff)

where:

list-parameter is a symbol, beginning with "?", that is bound to a list of expressions.

parameter is a symbol, beginning with "?", that is bound to successive elements of list-parameter.

wffis a well-formed formula as defined above, involving parameter.

The NEXT Operator

Finally the connective NEXT is provided that allows the system to assert propositions in the future.

wff ::= (NEXT proposition)

For example the wff,

(implies (and (off driver)

(on (power-command driver)))

10

(next (on driver)))

states that if the driver is off and an on power command is detected, in the next state the driver will be

on. Although this connective applies to any propositions it is used primarily to track device slate over
time.

This is a particularly bad example, because if there were a failure transition at this point which was
inconsistent with (on driver) you would be screwed by an inconsistent state. There are better examples

of why you'd really need to use next.

This capability is used during mode identification and recovery as Livingstone analyzes the behavior
of a system at successive states in time. At each step its analysis encompasses the current state a device
is in, and its successor state.

No mention of this capability so far in paper. Is it described in another document that should be
referenced?

Instantiation

As can be seen in Figure I, once the library has been defined for the domain,.models of the domain can
be instantiated. Hence for every construct available during library construction there exists a mapping
to a set of wffs that are then available to the theorem prover. This section is partitioned by library
construct and describes the process of instantiation for each construct from library -> model -> wff.

Relations

Both of these constructs, defvalue and defrelation define a mechanism for encapsulating and reusing
wffs, similar to the use of macros in functional programming.

defvalues

Given the same variable type declaration example as section h'ef{def:defvalues

(sign-values (temperature heater))

where the unary relation sign-values allows temperature to take on one of the propositions

• (positive (temperature heater))

• (zero (temperature heater))

• (negative (temperature heater))

such that no two of these propositions hold simultaneously, the instantiation of this construct will be:

(and (or (positive (temperature heater))

(zero (temperature heater))

(negative (temperature heater)))

(not (and (positive (temperature heater))

(zero (temperature heater))))

(not (and (negative (temperature heater))

(zero (temperature heater))))

(not (and (negative (temperature heater))

(positive (temperature heater)))))

defrelations

When the models are instantiated any instances of relations are replaced an instance of the wff in the
defrelation body. For example, the procedural constructs supported by MPL provides the following

mappings between relations and wffs.:

(IMPLIES wffa wffb) equivalent to (OR(NOT wffa) wffb)

11

(IFF wffa wffb) equivalent to (AND (IMPLIES wffa wffb)
(IMPLIES wffb wffa))

(WHEN wffa wffb equivalent to (IMPLIES wffa wffb

(UNLESS wffa wffb equivalent to (IMPLIES (NOT wffa) wffb

(IF wffa wffb wffx) equivalent to (AND (IMPLIES wffa wffb)
(IMPLIES (not wffa) wffc))

Defmodule

A defined module can be instantiated with specific values for its arguments using the function
INSTANTIATE-MODULE.

Defdevice

DEFDEVICE is used to specify a top-level device instance, created by instantiating and connecting
together primitive components (specified ala defcomponent) and aggregate modules (specified ala
defmodule). DEFDEVICE is exactly like DEFMODULE except that no arguments are defined for it, and
hence no variables are allowed. In addition to defining the corresponding module, DEFDEVICE also

automatically instantiates itself (this is possible because it isn't parameterized).

(defdevice device-name

(:structure

(type args)*

)

[(:facts

wff

)]

)

Defcomponent

An instance of a component is denoted by an expression of the form (type arg-values).

For example, the expression

(valve-driver rcs-latch-valve branch-a)

Creates an instance of component type valve-driver, enforcing the definition specified by the corresponding
defcomponent. When instantiating a component each parameter in a wff is replaced with its corresponding

value. For example, if the valve-driver defcomponent includes the wff:

(implies (closed (?name ?index))

(zero (out-flow (?name ?index))))

then the above driver instance produces the wff:

(implies (closed (rcs-latch-valve branch-a))

(zero (out-flow (rcs-latch-valve branch-a)))).

MPL Syntax
In the following, items within square brackets are optional, * denotes 0 or more occurrences of the previous
regular expression, + denotes 1 or more occurrences of the previous regular expression, and items in angle
brackets are explained further:

proposition : := (value variable),

variable ::= (attribute component).

wff ::= (AND wff+)

(OR wff+)

(NOT wff)

12

proposi ti on

(IMPLIES wff wff)

(IFF wff wff)

(WHEN wffwff)

(UNLESS wffwff)

(IF wffwffwff)

(= variable variable)

(NEXT proposition)

transi tion-spec : := (transition+)

transition ::= (<name> [:when wff]

:next mode-name

[:assert wff]

[:cost number])

If the :when clause is omitted, the wffdefaults to true If the :cost clause is omitted, the number defaults to 0

Defcomponent

(defcomponent type (args)

[(:attributes attribute-spec*)]

[(:inputs attribute-spec*)]

[(:outputs attribute-spec*)]

[(:ports attribute-spec*)]

[(:declarations wff)]

[(:backgrohnd

[:model wff]

[:initial-mode mode-name]

[:initially wff])]

(mode-name

:type <:ok-mode I :fault-mode>

[:probability number]

[:value number]

[:model wff]

[:transitions <transition-spec>])*

)

Shorthands

• :persist can be used in place of the :next clause. :persist is the same as :next <current-mode>

• :otherwise can be used instead of the <name> and the :when clause :otherwise is the same as
:when (not (or <other-conditions>)) The <name> can be omitted only when :otherwise is used

• If the :transitions clause as a whole is omitted from the component definition, it defaults to
((:otherwise :persist))

Additional notes

The wffassociated with :initially is asserted into the theory at the beginning. However, when a transition is
executed, these clauses are removed, and new clauses have to be added in using (the infamous!) frame
axioms.

Defmodule

The syntax for the DEFMODULE form is the following:

13

(defmodule device-name parameters

(:documentation string)

(attribute-info wff)

(:structure

(type . args) *

)

[(:facts wff)]

[(:connections wff)]

[(:application-data lisp-form)]

[(attribute-info att-spec)*]

[(dec-info att-spec)*]

lisp-form is any Lisp readable form

string is a regular Lisp string

device-name is an symbol denoting the name of the device.

parameters is a list of symbols, each beginning with "?", that parameterize this definition

attribute-info is one of :inputs, :outputs, :ports

type is a one of the types of defined components or modules

args is a list of symbols that define the particular instance of the component/module type. In a
module definition, the symbols may also be variables that occur in the parameters list

• wffis a well-formed formula as defined in formulas.lisp.

• attribute-info is one of :inputs, :outputs, or :ports

• dec-info is one of :input-declarations, :output-declarations, :port-declarations, or :declarations

• att-spec is a wff extended by @itemize @bullet @item any instances of (name :type type
[:documentation string]) are equivalent to the proposition (type name) @item If a top-level att-

spec is a list rather than a single extended wff, it is implicitly a conjunction of its members @end
itemize Thus the attribute specificaion

(:inputs (namel :type typel :documentation "stringl")

(name2 :type type2 :documentation "string2"))

is equivalent to the attribute specification {(:inputs and (type 1 namel) (type2 name2)) }

)

where

Commands and Monitors

Background

Every livingstone model has a certain number of attributes that are inputs and a certain number of outputs.
An input might represent a command given to a component, such as a command for a switch to turn on, and
an output might represent some continuously observable characteristic of the system, such as whether the
switch's indicator lamp is on or off. In a physical system a command occurs at a point in time, and a
monitored characteristic typically persists for some indefinite interval. Livingstone's model of the world is

simalar, as illustrated by a switch example.

Consider a switch in some state, for example turned-off, with its observable lamp output persisting in the
off condition. A command to turn on is given at a point in time, and the switch most likely transitions to the
turned-on state. We might then observe that the lamp now persists in the on condition, reinforcing our
belief that the switch transitioned to the turned-on state, rather than failing in some way.

14

InitspropositionalrepresentationofadevicemodelLivingstonefollowsroughlythesamesequenceof
events.Themodelisinsomestate,representedbyLivingstone'scurrenttheory.Thetheorycontains
propositionsforthedevicemodel,thefactthatthelampisobservedtobeoff,andsoon.Givinga
commandisrepresentedbyinsertinganewpropositionofthecommandvalueintothetheory.Whena
commandis inserted,anyoldobservationsare retracted and Livingstone uses the updated theory to
determine which mode transistions may have occured. The command is then retracted as it represents an

event, not a persistent condition. The new observations are inserted into the theory, and Livingstone checks
whether they are consistent with the inferred nominal transition, or if some failure transition may have
occured.

In order to automate the process of asserting and retracting propositions to simulate commands and

monitored outputs during Livingstone diagnosis, monitor and command constructs are provided.

Monitor Values

The function do-monitors is used to conveniently assert that an model output has some value and to
cause Livingstone to compute the likely diagnosis and mode transistions that result.

A monitor also ensures that no more than one of an outputs's mutually exclusive values is asserted into the

Livingstone theory at once and that an asserted value persists until explicity replated. Thus, if a new output
value is asserted with do-monitors, any existing value is automaticaly retracted first to avoid an

inconsistency. This new value persists until do-monitors or do-cmd (see below) is used to replace it.

If our model has an output attribute (indicator-lamp switchl) with value on or of, we can specify
a monitor as follows:

(new-moni tor- table)

(new-monitor '(indicator-lamp switchl) '(on off unknown) 'unknown)

new-monitor-table sets up the system to create monitors, and should be called before any monitors
are created.

new-moni tor creates a new monitor for an attribute of a model. The arguments are the attribute, the set
of values it may take on, and the initial value. The value unknown is treated specially, and indicates that no
value for the output should be asserted. In Livingstone terms this means neither (on (indicator-

lamp switchl)) nor (off (indicator-lamp switchl)) willassertedintothetheory.

We may setthevaluetoon with:(do-monitors '((on (indicator-lamp switchl))))

This will assert the proposition (on (indicator-lamp switchl)) into the theory and cause
Livingstone to look for any mode transitions that are indicated. This value will persist until another value is
asserted, perhaps with (do-monitors ' ((off (indicator-lamp switchl)))). Note that

Livingstone's diagnoses are persistent. That is, once Livingstone diagnoses that a component is in a mode,
it will make further diagnoses assuming the component started in the previously diagnosed mode. A "fresh"
copy of each component, in its initial mode, can be had by recreating the component or using a checkpoint.

Commands

do-cmd is used to simulate a device receiving a command and then displaying some monitored output. It
asserts the command values and monitored output values and asks Livingstone to perform diagnosis, all in
the appropriate order. A command ensures that no more than one of an input's values is asserted into the
theory at once. However, unlike a monitor, the asserted value is not peristent. To capture that a command is

an event rather than a condition, the command value is asserted while Livingstone is computing mode
transitions, then reset to a default value.

If our model has an input attribute (command-in switchl) with values turn-on, turn-off and no-
command, we can specify a command as follows:

(new-command- table)

(new-cmd '(command-in switchl) '(turn-on turn-off no-command) 'no-
command)

IS

new-command-tabl e sets up the system to create command, and should be called before any
commands are created.

new-coraraand creates a new command for an attribute of a model. The arguments are the attribute, the

set of values it may take on, and the default value. This default value is asserted initially, and after every
non-default command is processed.

We may set the command to turn-on with: (do-cmd ' (cormaand-in switchl) ' turn-on)

This will momentarily assert that (command-in switchl)) has the value turn-on and ask

Livingstone to look for any mode transitions that are indicated.

However, this is usually not how we would like to use do-cmd. Note that we have not specified any new

monitor values, so Livingstone will perform diagnosis assuming that the command was given and no

monitored output values changed. To specify a set of monitor values that change after the command is

given, a list of monitors and values can be passed to do-cmd:

(do-cmd '(command-in switchl) 'turn-on ' (on (indicator-lamp switchl)))

This asks Livingstone to report the probably mode changes given that the command input (turn-on
(command-in switchl)) was given,and thevalueof (on (indicator-lamp switchl))

became on as a result. Note that Livingstone's diagnoses are persistent. That is, once Livingstone diagnoses

that a component is in a mode, it will make further diagnoses assuming the component started in the
previously diagnosed mode. A "fresh" copy of each component, in its initial mode, can be had by recreating
the component or using a checkpoint.

Syntax

Note that this is the syntax for the simplest usage of do-cmd and do-moni tors.

(new-monitor-table)
(new-monitor attribute value-list initial-value)

(do-monitors new-monitor-proposition-list)

(new-command-table)

(new-command attribute value-list default-value)

(do-cmd attribute value new-monitor-proposition-list)

new-monitor-proposition-list = (monitor-value-proposition*)

monitor-value-proposition = (value attribute)

attribute = (attribute-name object) generally speaking

A very simple switch model
The switch component models a switch with an indicator lamp. The switch has two nominal modes, on and
off. In the off mode, the indicator lamp is off, and in the on mode it is on. When in the on mode,
commanding the switch off turns it off When in the off mode, commanding the switch on turns it on If the
switch has been commanded on and the lamp is off, or vice versa, the switch must be broken.

If you'd like to run this sample, you can copy everything from ;; Begin lisp code to ;; End lisp code out of
this window and into a file. Load the file into a Livingstone session, then invoke (test-switch)

16

;; Begin lisp code

; Defining the finite domains of our attributes

; This will allow livingstone to infer that if an attribute

; which is an on-off-value cannot be on in a given situation,

; it must be off, and so on.

;;; An on-off-value such as lamp output has one of two values

(defvalues on-off-values (on off))

switch command has

(on off no-command))

; ; ; An on-off-congnand like

(defvalues on-off-command

; The switch component

; This component captures the behavior of the switch given

; its current mode, the command input and the value of the

; indicator-lamp observed. To use the model, we will

; tell Livingstone the command given and the observation at

; the indicator lamp, and it will infer the most likely

; consistent mode for the switch. We specify these values by

;asseningvalues for (command-in ?name) and (indicator-lamp ?name)

;The functions make-command and make-monitor willhelp.

;The mode startsat OFF and isupdated by each mode diagnosis

;Livingstone makes.

one of three values

(defcomponent switch (?name)

(:documentation "An example switch with a failure mode")

(:inputs

((command-in ?name)

:type on-off-command

:documentation "Command to turn switch on or off"))

(:outputs

((indicator-lamp ?name)

:type on-off-values

:documentation"Observed value"))

(:background :initial-mode off)

(on

:documentation "

The ON mode. If switch is on, indicator lamp is on.

If we get an off command, we nominally move to off state."

:model (on (indicator-lamp ?name))

:type :ok-mode

:transitions ((turn-off

:when (off (command-in ?name))

:next off)

(:otherwise :persist)))

17

(off

:documentation "

The OFF mode. If switch is off, indicator lamp is off.

If we get an on command, we nominally move to on state."

:model (off (indicator-lamp ?name))

:type :ok-mode

:transitions ((turn-on

:when (on (command-in ?name))

:next on)

(:otherwise :persist)))

; If no transition above results in a state consistent with

; the value of the command and indicator lamp, we take a

; failure transition to this state.

(broken

:documentation "

This fault mode makes no predictions about the indicator

lamp. So, it will be used if we turn the switch on'and

the lamp is off, or we turn the switch off and the

lamp is on, neither of which is consistent with the

modes above."

:type :fault-mode

:probability 0.01

; Once we decide the switch is broken, it stays broken

:transitions ((:otherwise :persist))))

; A module which will instantiate the component

; A module is a convenient way of instantiating one or more

; components which are related. Instantiating a module will

; create all components in its :structure field, here just

; a switch with name ?name

(defmodule switch-module (?name)

(:structure

(switch ?name)))

; A function to instantiate the module

; Calling this function will create a switch component called

; swi tchl. It will also create a command for

; the attribute (coraraand-in switchl) and a monitor

;for the attribute(indicator-lamp switchl).

;We will lateruse the function do-cmd to specify

the command given and]amp observation for the switch, so

; Livingstone can determine the switch's mode.

; See the Livingstone web page on Commands and Monitors

(defun create-switch()

; create a switch module, which will create a switch

; component named switchl

18

(instantiate-module '(switch-module switchl))

(new-command-table)

(new-monitor-table)

;; Create a command which will assert a value

;; for (command-switch switchl), allow the switch

;; transition to be inferred, then reset to

;; (command-switch switchl) to no-command, the default

(new-command '(con_nand-in switchl)

'(on off no-command)

'no-command)

;; Create a monitor which will assert persistent

;; values for (indicator-switch switchl)

(new-monitor ' (indicator-lamp switchl)

' (on off unknown)

'unknown))

; Testing the component

;We turn the switch on, and the lamp goes on. We turn the switch

;off and the lamp goes off. Finally, we turn the switch on and the

;lamp stays off, a failure, then we turn the switch off

(defun test-switch ()

(format t "Creating switch...-%")

(create-switch)

(format t "Giving command on, with indicator lamp turning on-%')

(do-cmd '(command-in switchl) 'on '((on (indicator-lamp switchl))))

(format t "-%-%Giving command off, with indicator lamp turning

off-%")

(do-cmd '(command-in switchl) 'off ' ((off (indicator-lamp

switchl))))

(format t "-%-%Giving command on, with indicator lamp still off-%")

;; Note we do not need to specify monitor value, since old value

persists

(do-cmd '(command-in switchl) 'on)

(format t "-%-%A broken switch stays broken in our model-%")

(format t "Giving command off, with indicator lamp still off-%")

;; Note we do not need to specify monitor value, since old value

persists

(do-cmd '(command-in switchl) 'off))

;; End lisp code

The output from evaluating (turn-on)

TP(33): (turn-on)

creating switch...

Giving command on, with indicator lamp turning on

19

Commanding (COMMAND-IN SWITCH1) to ON,

Consequently the following modes just
SWITCH1 : OFF - ON

transitioned:

Giving command off, with indicator lamp turning off

Commanding (COMMAND-IN SWITCH1) to OFF,

Consequently the following modes Just

SWITCH1 : ON - OFF

transitioned:

Giving command on, with indicator lamp still off

Commanding (COMMAND-IN SWITCH1) to ON,.

(<(BROKEN)>)

Consequently the following modes just transitioned:

SWITCH1 : OFF -> BROKEN

>A broken switch stays broken in our model

>Giving command off, with indicator lamp still off

Commanding (COMMAND-IN SWITCHI) to OFF,

Consequently the following modes just transitioned: none

NIL

Tools and Hints for working with models

Livingstone Debugging Tools

• why

The function (why proposition) explains why a proposition has a truth value or why it has
no truth value. This function is preferred to explain-current (see below) because it is interactive.
After invoking the function type :h for help or :q to quit.

• *debug-level*
The *debug-level* can be set to 0,1,2 or 3 and determines the amount of debugging output
Livingstone gives while determining the state of the system. At level 0, only the diagnosed mode
transitions are reported. At level 3, additional information such as which modes were examined
and rejected is printed. *debug-level* may be modified at any time with setf

• pvalues ("prop values")

The function (pvalues a t tribu re) queries the Livingstone current propositional theory for

the value of a parameter, or attribute in the MPL language. For example, if you have instantiated a
component named switchl with an attribute (command-in switchl), then (pvalue
' (command-in switchl)) returns the current value of that attribute.

• cprops ("see props")
The function (cprops devicename) will display the propositions involving the device

without requiring you to specifically enumerate them as pvalues does.

• explain-current
The function (explain-current) can be used to explain the current contradiction in

Livingstone's propositional theory, as in the case where a command inconsistent with the current
state has been asserted. This is extremely useful in tracking down an inconsistency to the portion
of a model which is responsible.

2O

When (explain-current) is invoked, it displays a proposition that could not be satisfied,

such as the inconsistent command that was asserted. Then, it displays the contradiction with the
unsatisfied clause, along with its support, or reasons why it must be true. The support of the
support is displayed, until all support is reduced to true propositions, such as the current mode of
the model.

If there is no inconsistency, then (explain-current) simply sets up the current candidate

diagnosis for more detailed explanation via explain-prop

• explain-prop
The function (explain-prop proposi tion) displays the current truth value of a

proposition and an explanation for why the proposition has that truth value.

For example, if you have a component named switch I with an attribute (command-in

switchl), then (explain-prop ' (off (command-in switchl))) will report if(off
(command-in switchl) is Irue or false, that is, whether or not (command-in switch1) has the value

off. In either case, an explanation for the truth value is also printed.

Note that explain-prop will not produce explanations unless explain-current has been

used to set up the explanations for the current diagnosis first.

Finding things in the Livingstone Image

Printing all items of a given type:

• print-all-modes (&key (system *system*))

• print-all-cmds (&key (system *system*))

• print-all-monitors (&key (system *system*))

• print-monitor-values 0

• print-waiting-monitors 0

Finding specific items by name

• find-check-point (name &optional (ht *check-point-ht*))

• find-command (name &optional (system *system*))

• find-component (name &optional (system *system*))

• find-component-by-short-name (name &optional (system *system*))

• find-component-mode (mode-name component)

• find-instance (instance-name &optional (system *system*))

• find-mode (name &optional (system *system*))

• find-module (name &optional (system *system*))

• find-module-by-short-name (name &optional (system *system*))

• find-monitor (name &optional (system *system*))

• find-proposition (name &optional (theory *theory*))

• find-proposition-value (pname &optional (theory *theory*))

• find-relation-definition (relation)

• find-variable-legal- values (variable)

21

Common errors encountered in Livingstone

• Component X in mode Y has no next state

This indicates Livingstone does not have enough information to determine the next mode of this
component. This could mean there is a problem in the : transitions of the mode Y.

However, it usually means you have forgotten to specify a command or monitor that matches the
inputs or outputs of the component, and therefore transitions determined by these values cannot be
taken.

If you think you have specified all the necessary commands and montiors, check that the
component input or output attribute is spelled correctly when you create the command or monitor.

Creating switch 1 with command input (command- in swi tchl) and then creating and using a
command (command-in switch-l) will result in this error.

• Command is inconsistent with initial state

The current state of a model is represented by a set of propositions. When do-cmd is used to give a
command, the first step is for Livingstone to assert the command into the model as a proposition.
This may allow new inferences to be made with contradict the original set of propositions.

For example, consider a component which has a mode with the following model, where
(command-in ?name) is acommand to be asserted:

:model (and (on a)

(implies (off (command-in ?name))

(off a)))

In this mode, (on a) is true. However, if the off command is given in this mode, (off

(command-in ?name)) is asserted. Thus, (off a) is implied, which contradicts (on a)

presuming (off a) and (on a) are mutually exclusive. Thus, asserting the off command is

inconsistent with the current mode of a component. The Livingstone function explain-
current is useful here.

Operator next seems to have no effect

The next operator in Livingstone specifies that a proposition must be true in the next state after a

transition. Note that next only applies to a single proposition or negated proposition, such as
(next (not (off (command-in ?name)))).

You cannot use next to directly state that a more complex clause such as
(or (on a) (off (command-in ?name)))) will be true in the next state.

Unfortunately, Livingstone will parse this without error and simply ignore it, potentially creating a
debugging problem.

You can easily represent the same effect with next by using the logical equivalent of a flag to

determine if some complex clause should be true. For example, if a component has the
background model

(implies or-is-true (or (on a) (off (command-in ?name))))),then

(next or-is-true) has thesame effectastheineorrect(next (or (on a) (off

(command-in ?name)))).

22

,z_:_r_8 11:3_i me-_,]!SP __:___!_S"_>_P_'_%T/_)!_
::t _._ Node:Common-nisp7 Packege:TP; Baae:lO _w-

(in-package : tp|

;/;;;;/:;l/;:;;:::;l;;;;T:::;l:;:;;;;:ll;l:;;;:;:;::;l::T::::::l/l::;:;

;it
;;; Main _gJne System (ME) Domain Unit
...,o,
:7;;:::;;;/:;;:;;;;;;;::;;;;/;7:::;;;;:;;;:;:;;;I;;/;;;:;;;;/;/:/i;¢;t;

:;; This file is b_oken into three parts.

;;: o Documentation, including I/O spat, device structure, modeling

:;; assumptions, failure modes and model statue.

;;; o COo_onen£ models specific to the ME, and pointers to models used.

;;; o $cbe_Itlc ME domain unit device epeciflce£1one.

;;; The reader should start with MAINoDIGIME-SYST_ defdevice and

;; ; work up.

;;; See the file m_l.doc for a s%m_ary of Ehe constructs provided by

;:; Livingstone's Model-based Prograunming LanglJage.

:::
:::

:;7 A) RCS Domain Unit Documentation

:::
:::

:::

;:; Main Engine I/O spec.
:::

;;; lnpu ta _

7;; (power-ctad-ln ?device):
;;; commands the respective driver tO be powered on or off. Each
; ;; command is of ty_e on-off-command.

;:; Also can be used to reset • driver if it becomes unexpectedly-off.
?device is bph, (BpLVD-(ox, fuel} (a,b}), (MEVD {a,b)), (EGED {a,b))

,,, or (MELVD a) [no (HeLVD b)).

;;; (cmd-ln ?driver ?device)
;:; Commands device's state. Values are (oPt, CLOSE or NO-CO_tD),

;;: If ?driver is (BPLVD-[ox, fuel) {a,b)) 5hen ?device is]v

;;; If ?driver is (MEVD {e,b)) then ?device is me-ox-fuel.
:;: If ?driver is (MELVD a) then ?device is Iv-be. [no (HEDVD b)].

;;; (ted-in (aged {e,b}) ega),
7 t; Commands age angle, command is of type SR-command.

7:; (asserted (pyro b)):
;;; Fires the main engine b pyros. Asserted is • predicate.

7;; Outputs:

:;; (status-out (?driver {a,b}))
;;; Indicates whether or not the driver is on and ready.
;;; Of type status-values (READY or NONE).

7;; ?driver is BPLVD-{ox, fuel), MEVD or _ED.

:;; (posltion-ou£ (bplvd-{ox, fuel) (a,b}) iv)

;;: Position o£ latch valves. Values is of type

;:; open-close-values. Maintains VALID-DATA predicate.

;;; (analog-out (eged {a,b)) age)

;;: Ega angle measurement, of type :r-values. Maintains

; ;; VALID-DATA predicate.
;;; (In reality e'ach angle is between -0.2 and +0.2 red:an:,)

;;; "*should be (reading (tamp-out me)) ra_her then (terns-out me) - PN''

;;; (reading (tamp-out me)) :

;;; main engine (a) injector temperature measurement, type
;;; st-values. VALID-DATA predicate.

:;: (In reality each temp. is in the range -I0 to 300 C with

; ;; an engine overheat higher(?))

;;; Prediction:

;;: (thrust (me {e,b)))

:;; Thrust from main engine. Type :r-values. (not sensed).
;;; (In reality each thrust is in the range O, 300, 400 (nominal), 600).

:::

;;7
;;7 ME Constituents

:::

77; Models the two branches of the main engine, including:

:7;
;;; HeLVD - Helium Pressurent Latch Valve Driver (A only)
;;: BPLVD - Bi-Propellent Latch Valve Driver (OX & FUEL) (A & B)

;;; MEVD - Main Engine valve Drivers (A & B)

7;: EGED - Engine Glebe] Electronics Drivers (A & B)
;:; EGA - Engine Gimbal Actuators {A & B)

:;; Engine B pyros (2)

:;; el-propellent latch valves (fuel & oxypen) (A & B)
:;; Helium latch valve (upstream only) (A only)

:;; Main engine valves (fuel & oxygen) (A & B, commanded

,,, together, not latched)
;;; Helium pressure regulator (A only)

:::

:;; ME Constituent Failure Nodes

:::::::1::::::::::::::::::::::77::::7:::::::::::::::7:::::::::7::::::::

;;; Failure modes modeled in the ME consls£ of the followlng. Failures are

;:; not repairable, unless specified.

77: o HELVD(A), BPLVD-(ox, fuel)(A&B), MEVD(A&B) and EGED(A&B) :

7:: o hard off

;;: 0 unexpectedly off z> can recover by powering b_ck on.

::: 0 Helium Tank:

::; o low-pressure

:;; o empty

::; o, Oxidizer end Fuel Tanks:

Friday September 10, 99

Printed by James Kurien

;:; o unknown

7:; o Latch valvee:
7;: 0 etUCk open

7:: 0 etuck cloeed

;:: o ME thruster Valves:

;7; o stuck open
;:: O etuck half toward closed

;7: o Stuck closed

;;: o Engine Gimbal Actuator:
;;; o stuck

;:: o Bees Plate Heater:

;7: o stuck off

;;; 0 Main _glnes:
;7; O Over heated

;;; O failed IOW
;:: o failed zero

;;: o Sensors (temperature, angle, latch-valve position)_

;;; 0 Unk_ow_

;;; NE failures in the scenario:

;;/ O EGA Stuck
:;7 o BPLVD felled off

;;7 o Meln engine over heated

:::

7;; Model Sim_llficatlone, Clerificatlons end presumptions

:::

:;/ o _here le only one pyro coam_d, firing the two B p),roe.

;;; o The pyro co_and comes in directly from the VDECU.

1:: o There iS a elngle base plate heater, nommanded by the VDECU

;;; directly. It latches state.

;;; o There iea single NELVD (A) which drlves • slngle latch valve,
;;; coming out of the helium tank.

i;; o The BPLVD-{ox, fuel} A & B each drive oneletch valve, there is

:;; one driver for oxidizer and one for fuel.

;;7 o Each MEVD comsnds the engine oxidizer and fuel valves wlth •

;;7 single command. These valves are unlatched. The MEVD latches
;;; these commands internally, unless power is lost.

;;; o The MEVis • single Valve for both oxidizer and fuel.

:::

;;7 Status

:::

;;: o The current model includes individual components and models for

;;: the different elements of the Maine engine listed above, corresponding

;;; to • subset of cos_ponents on the "Simplified PME Schematic
::; (D-12182, G_-b-6) ". The number of latch valves, regulators,

;;; pyros and pyro ladders have been reduced.

::; o It DOES_RgT include more detailed elements, such as filters,

::; p)a'O ladders specified on the "Cesslni PNS Schemetlc

;;; (D-12182, GRB-b-5)*,

:::

:;; Things to Do:

::

¢:; 0 Refine maln engine model.
::: o Understand the £eilure modes the: cause a main engine too hot.

;:; O DO we want the "stuck half toward closed" lef£ In for me valves?

::: o The main engine now bee one heater, that bests both engines

;:: confirm.
;:2 o Check the passage of Invalld-deta signals.

;;; Future:

:;/ o Additional failure models and unknown modes for components.

;;; o Probability and cost estimates.
:;; 0 Node hlererchy.

;:; o Time and integral effects.

:::

:::

;;; B) Constituent Models $peclflc to the Main _ngine

:::

:::

;;; The followlng models ere used only wi£hln the ME domain unlt.

;;; Relevant models and tale:lone ere aleo defined in:

;;; o quali tstlve-arJ thmetic.liep
7:; Defines Gualltatlve arithmetic on eigns and relative values•

;; 0 generel-reletlons.llep
;; Defines more spacecraf_ speci fic values, predicates end tale:lone

7; o shared-components.llsp
;; Defines generic components end connection models used

;; throughout the spacecraft.

;; o driver.li_p
7; Defines a generic propulsion driver model.

::

;; Drlvare

7;

::

:;; The following drlvere (HELVD, BPLVD, MEVD and EGED) are ell

;7; easily generated using the driver generator macro
7;: propulelon-drlver defined Jn driver.lisp.

;;; The following la largely comments apeclfylng the Inputs end outputs

:;," of each driver,

1/5

.: /_rO2,_Ul,l:;J me-v3.11sp _i_ _:_:_i a_e/_ _

((_fmodule hellum-letch-veZve-drlver (?name ?iv-he)

/,, HBLVO drives one latch valve, no eLqaor Inpute.

;; parameters:
;; ?name is the name of ¢he Helium latch valve driver (HELVe).

;; ?Iv-he is the name of the helium latch valve being driven.

/ ; Inpute/Outputa :

;; COaeands from the Valve Driver Control Unit (VDECU):

;;
;; (power-cad-in ?name)

;; Turns on/off the driver (values ON, OFF, or NO-CONWAND).
/; AISO used to turn on if driver become# unexpectedly-off.

;; (cwd-in ?name ?iv-he)
1; Cammands latch valve's state. (values are OPt, CDOSE or

/ ; NO-CORWAND}

;; Outputs to the _DECU:

i; (StatUS-OUt ?name)

;; Indicates whether or not _he driver is on and ready.
/; Of type status-values (READY or NONE).

;; Commands going out to device being driven:

;; (c_d-out ?name ?Iv-he)
;; Passes the discrete input command to the corresponding latch valve.

(:structure

;; This generates a driver that drives two latch valves, and
;; passes beck tWO valve positions.

(propulslon-driver ?name
(?iv-he|

(}

(}
(}

()

()
(1)))

(_efmodule bipropellant-letch-valve-drlver (?name ?lv-ox ?Iv-fuel)

/; BPLVD drives two latch valve, returns two position sensor inputs.

;; Parameters:
;; ?name is the name of the BiPropellant waive driver (BPVD).
;; ?Iv-ox, ?1v-fuel are the names of oxygen and fuel latch valves

;; being driven.

; ; Inputs�Outputs:
;; commands from the Valve Driver Control Unit {VDECU):

; ; {power-trod-in ?name)
Turns on/off the driver (values ON, OFF, or NO-CO_9_%ND).

;; Also used to turn on if driver becomes unexpectedly-of(.

;; (cmd-in ?name {?Iv-ox,?lv-fuel))
Commands latch valve's state. (values are OPEN, CLOSE or

; ; NO-CO'WAND) .

;; Outputs to the VDECU:

;; (status-out ?name)
Indicates whether or not the driver is on and ready.

;; Of type status-values (READY or NONE).

;; (position-out ?name {?lv-ox, 71v-fuel))
Latch valve position measurement, of type oc-values.

; ¢ Maintains VALID-DATA predicate.

;; Commands going out to device being driven:

;; (cmd-out ?name (?Iv-ox,?Iv-fuel})
Passes the discrete input command to _he corresponding latch valve.

;; Signals coming in frc_ devices being driven:

(positlon-ln ?name {?Iv-ox, ?Iv-fuel))
_ Latch valve position measurement, of type open-closed-values

;; Suppl i es VALID-DATA predi Ca Ca.

(:structure

;; This generates a driver that drives tWO latch valves, and

;; passes beck two valve positions.

{propulslon-dr iver ?name
(?iv-ox ?iv-fuel)

(}

(}
(;

(}
(]

(?iv-ox ?iv-fuel} I))

(de[module spllt-bipropellant-latch-valve-drlver (?name ?Iv)

;; split BPLVD one latch vaJve, returns one position sensor input.

;; Parameters:

;; ?name Is the name of the BiPropellent valve driver (BPVD).
;; ?Iv is a name for the valve being driven.

; ; Inputs�outpUtS:
;; Commands from the Valve Drivez Control Unit (VDECU):

_ _ (power-trod-in ?name)Turns on/off the driver (values ON, OFF, Or NO-COMMAND).
;; Also used to _urn on If driver becomes unexpectedly-off.

;; [trod-in ?name ?Jr)
Commands latch valve's slate. (values are OPEN, CLOSE or

;; NO-CO_%ND) .

;; OUtpUtS to the VDECU:

;; (status-out ?name]
Indicates whether or no[the driver Is on and ready.

;; Of type status-values (READY or NONE).

;; (poeltion-out ?name ?Jr)

Latch valve position measurement, or type OC-VS]UeS.

_5

Printed by James Kuden

;; Maintalne VALID-DATA predlcete.

;; Commands going OUt to device being drlven_

;; (cad-out ?name Plv;
Passes the discrete inpu_ command to the corresponding latch valve.

;; Signals cooing in from devices being driven:

;; {poaition-in ?name ?iv)
1; batch valve poaitlon measurement, of tFpe open-closed-values

;; Supplies VALID-DATA predicate.

[:structure

;; Thle generates a driver that drives two latch valves, end

;; passes beck tWO valve positions.
;; **The above comment now seem8 to be obsolete; the blprop latch valve

;; merely controls a single latch valve. -Pl¢'"

(propu 1 lion-dr iver ?name
(?lv)
()

()

(}
(1

()

(?iv)))

)

(defmoclule l_In-englne-valve-drlver (?name ?me-ox-fuel)

;; MEVD uses one signal to simultaneously drive the engine's

;; oxygen and fuel valves. No sensor inputs/outputs,

; ; Parameters:
;; ?name is the name 0£ the Main engine valve driver (MEVD).

;; ?me-_x-fuel ie the name of the R&in engine valves being driven.

; ; Inputs/Outputs:

; ; Cam.ands froo the valve'Drlver Control Unit (_D_CTJ) :
t;
;; (power-cad-in ?name)

Turns on/off the driver (values ON, OFF, or WO-CORNAND).

;; Also USed to turn on if driver becomes UneA'pectedly-off.

;; (cmd-ln ?name ?me-ox-fuel)

;; COmmandS engine valve's state. (values are OPEN, CLOgE or

; ; W_>-CO_fA_D).

; ; Outputs to the VD_CU:

;; (status-out ?name)

;; Indicates whether or not the driver is on and ready.

;; Of type status-values (READY or NONE).

;; Signals going OUt to device being driven:

;; (signal-out ?name ?me-ox-fuel)

USeS a continuous Signal CO command the engine valves, because
;; they ere unable to latch commend. Of type oc-values.

(:structure
;; This generates a driver that drives two latch valves, and

;; passes beck two valve positions.

(propul slon-driver ?name
()

{?me-ox- fuel)
()

()

(}

()|)

)

(de[module _glne-glmbal-electr0nlcs-driver (?name ?egs)

;; EGED passes angle coffi_ands tO the engine gimbal actu&tor
;; It returns sensed angle.

;; Parameters:
;; ?name is the name of the engine gimbal electronlcs driver (EGED).

;; ?ega is the name of the engine glmbal actuator being driven.

; ; Inputs/Outputs:

;; Commands from the valve Driver Control _nlt (_DECU) :

; ; (pomer-cJ_d-in ?name) -

;; Turns on/off the driver (values ON, OFF, or RO-CO_U_D).
;; AlSO used to turn on if driver becomes unexpectedly-off.

;; (cad-in ?name ?ega)

C_ands the ega to a S_eclfied angle (of tYpe SR-con_and).

;; {In reality a value between -0.2 and +0.2 radiane).

;/ OUtpUtS tO the VDECU:

;; (StatUS-OUt ?name)

Indicates whether or not the driver le on and ready.

;; Of type status-values (READY or NONE).

;; (analog-out ?name ?ega)

Passes along EGA angle measurement, Of type at-values.
; ; Nalntelns VALID-DATA predicate.

;; Commands going out to device being driven:

;¢ (cmd-out ?name ?ages
Passes angle command to [he respective ega (of type SR-co_mand).

;; {In reality a value between -0.2 end *0.2 rsdlans).

;; Signals coming in from the ega:

;; (analog-in ?name ?egaJ
;; EGA angle measurement, of type st-values. Maintains VALID-DATA

;; predl ca re.

(:structure

;; This generates • driver that drives the ega angle, and

/; passes back the sensed ega angle

(propul lion-driver ?name
()
()

()

[?ega)

Friday September 10, 99

_ =. _ •_ .._:_ _ ,:_ • •+_,_++ ,, .. _>x _,:_,:,.:._:,_:_ i_•_r_:'_ •_

Apr_;9e 11:31 me-v3.11sp _=+_?_:::'":_page/_
(1

(?ega)
()))

)

tt;
; ;; Regulators

;t;
:::

(defcomponent helium-regulator (?name}

;; Attributes:
;; input : the input flow ten_lnel of the regulator

;; output : the output £]ow terminal of the regulator

1; The hellum-regulator models its input pressure as being of tyj>e

;; ST-values, and its output pressure as being Of type sr-valuss.
;; The normal function of a helium-regulator is to step do_ s high input

;; prsslure to a working output pressure.
;; Note that the regulator model assumes that the output isn't oddly
;; connected, e.g., to a vacuum. This sJmp]Jfies the model.

(:at trlbutes
(.,A (hydraulic-terminal (input ?name})

(hydraulic-termlnal (output ?name))))

;; **cha_ged :ok tO ok - PN''
(ok

:type :ok-mode
:model (--_

;; When the regulator is working the input and output

;; pressures and their deviations from nomlns] are _uelitative]y

;; the same.
(st-equal (pressure (output ?name))

(pressure (input ?name)))
;: By continuity the flows have Opposite signs.

(st-negate (flo_ (£nput ?name))
(flow (output ?na_e)])

;; A normal regulator doesn't allow backward flow (we're

;; assuming that a backwsrd flow would cause _he regulator to

;; close,,.)
;; **the signs on these have been interchanged - PN*"

(not (negative (flow (input ?name))})
(not (positive (flow {output ?name})))})

{stuck-closed

:type :fault-mode
;; Failure mode of the regulator when it is blocked

:probability 0.00001

:model (_ ;; A closed regulator allows no flow
(zero (flow (input ?name)}}

[zero (flow (output ?name)])))

[Stuc k-open

: _y_e :faul t-mode
;; Failure mode of the regulator when it fails to regu]ace, but just

; ; stays open.
:probability 0.00001

:model (_m_
;; The signs of the pressures should be the same,

(s-equal (pressure (input 7name))

(pressure (output ?name)))
;; It iS assumed that when the input pressure is nominal or high,

;; then that leads to s high output regulator pressure.

(%l.l_.elg (low (pressure [input ?name)))
{high (pressure (output ?name))))

;; If the input pressure is low, then we assume that the

;; output pressure might be high, low or nominal.
;; Thus no prediction is made.

)))

:::

;; ; Main Engine

:::

;;; TO DO:

;;/ 0 Recheck the model in the speclflcatlon.
;;; o What happens if one flow is high and the other is nominal?

(defcomponent maln-englne (?name)

; ; Attributes:
;; fuel-input : the input flow terminal for fuel

;; oxy_en-lnput : the input flow termlnsl for oxidiser

;; thrust : the thrust provided by the engine

thermal-output : thruster temperature
(:attributes

(=,,A (hydraulic-terminal {fuel-lnput ?name})

[hydraullc-terminal {oxygen-_nput ?name))
(temperature-terminal (thermal-output ?name)(

;; The provided thrust can be nominal, low, or zero
{SR-values (thrust ?name)]))

(:background
:model

;; In expected configurations, fuel and oxidizer can never

;; be supplied by the engine, and thruster can't be negative.

;; ''It should be "(not (negative...))" - PW'"

(not (negstlve {flow (fuel-input ?name))})

(not (negative (flow (oxygen-lnput ?name}]))
;;; (not (positive (flow (fuel-lnput ?name))))

;;; (not (positive (flow (oxFgen-lnput ?name})))

(not (negative (thrust ?name}])
;; Propellent slwsys flows down a pressure drop,

(sr-equal (pressure (oxygen-input ?name} 1
(f_ow (oxygen-lnput ?name)))

{sr-e_us] (pressure (fuel-input ?name))
(flow (fuel-lnput ?name}))

;; ''added the following background clauses - PN*"
;; If there Is no flow into the engine, Jt can't produce any thrust

;; Furthermore, if thls zero flow _s the expected flow,].e., IS

;; nominal, then the output is also nominal, What hsppens If the zero

;; flow is low?

(_ (zero (flow (oxygen-lnput ?name}}(

(zero (thrust ?name} 1

(when (nomlna] (flow (oxygen-lnput ?name())
(nomtns] (thrust ?name)))))

(w_e_ (zero (f]C_ (fuel-lnput ?name)))
(lu*_

(zero {thrust ?name}l

)w'=_DJt (nominal (flow (fuel-Input ?nsme)}}

Friday September 10, 99

Printed by James Kuden

,_r+_,98 !!.:3! iii ,-_i -m__P- ' _ P_gi_!_

))

(ok

:type
:model

(nominal (thrust ?name)))))

=ok-me_

(am_

/¢ Thrusting may become high in thls mode, but not enough to

; ; overheat.
(nominal [te_kD_raturs Jthermal-output ?name) [)

; ; Detsnminlng the sign of the thrust.

/; **Changed the following to take edv_u_tsge of the background

;; rule - PN'"

(_be_ (_ (poslt_ve (flow (oxy_en-_np_t ?n_me)))
(positive (flow (fuel-input ?name))))

(positive (thrust ?name]))

;; Determining the relative value of thrusting:

;; WcmJnal flows produce nominal thrust.
(_ (....A (nominal (flow (fuel-input ?name)))

(nominal {flow (oxygen-input ?name))))
(nominal (thrust ?name}])

;; High f]ows produce high thrust.

(_
('_ (high (flow (fuel-input ?nameS))

{high (flow (oxygen-lnput ?name))))

(high (thrust ?name)) (
;;If either either flow lS low, but the other is nun-sere,

;; Then the thrust is low.

(oz [mad[(low (flow (oxygen-input ?name]))

(not [zero (flow (fuel-lnput ?name)))})
("_ (low (flow (fuel-lnput ?ns.mm)})

(not (zero (flow (oxygsn-lnput ?name})))()

(low (thrust ?name)))
;;; What does a high and nominal flow produce???

))

(eve r -bee ted

:type :fault-mode
;; **changed the probabilities tO the uniform e-3 - _W**

:probabl llty O.OO1
:model (aw_ ;; the engine is over heated.

;; If its thrusting then its thrusting high.

(high (teml)erature (thermal-output ?name())
;; "*Modified the following to take advantage of the background

;; rule on zero thrusting - PN*
;; **Co_inented out the following slnce we don't went to insist

;; that a hot engine will thrust high - PN**

;; (when (end (positive (flow (oxygen-input ?name))J

;; (positive (flow (fuel-input ?name))))
;; (and (high (thrust ?name))

;; (_ositlve(thrust _n_._;);)
(unknown

: type : fault-mode

;; "*changed the probabilities to the uniform e-4 - P_'"
: probabi 1 ity . 0001

))

::

;;; _glne Gimbal Actuator model

(defcomponmnt engine-gimbal-actuator [?name}

;; An engine gimbal actuator can be commanded to change the angle Of

;; the engine thruster.

;; Attributes:
;; cmd-in: commands the ega to S specified angle (of ty_e SB-command).

(In reellty a vslue between -0.2 and +0.2 rsdJans).

;; angle-out: angle of the engine gi_bal (of ty_e SR-vslues).

;; m::xiel;

;; The angle-out should be nominal ss long as Its working correctly.
/; Could also maintain _he angle's sign if we could latch values.

(:attributes
("_ (sr-c_m,and (cmd-ln ?name)}

(sr-vslues (angle-out ?name)})}
(:declarations

;; st-command also has a predicate no-cow,mend

(no-cc_mand (c._-in ?name)))

;; The followlng isn't even really correct. The value is

;; nom]nal only presuming its been commanded correct]y.
(ok

:ty1_e :ok-mode
:model lnominal (angle-ou_ ?name}(}

(stuck

:ty_e :fault-mode
;; Failure mode where the valve is stuck in sn open position.

:probability 0.0005

))

:::
:::

;; C) C_osite RCS Schematic descriptions

:::

:::

:::

;;
Main Engine Branch Schematic Description

:::

;; Note: the following uses separe me-ox end me-fuel vslves, but

;; c_nds them through s single MEVD command.

;; Note: the re]lowing has a single BPLVD for s branch, driving

;; both bJprop vslvss.

defmodule M_In-sng_ne-brsnch (?name}

;; Model one branch of the reaction control system

;; Inputs:

;; (input (Iv-(ox, fueJ} (a,b_))

315

;; Oxidlzmr/fuel input to me latch valve. Values arm SR-va]ues.

;; (poorer-cad-in (?driver ?name)]
;; Turn# ?drtvor on or of[, Values arm ON, OFF, gO-CO, rAND.

;; Also can be used to reset a driver if it becomes unexpectedly-off.

;; ?driver is BPLVD- (ox, fuel) , ME1/D or EGED.

¢; (cad-in (?driver ?name) ?valve] :

;; Commands ?valve open or closed. Values are (OPt, CLOSE or

2f ?driver is BPLVD-{ox, fual) then ?valve is Iv
;;; Zf ?driver is NEVD then ?valve is me-ox-fueJ.

;; fred-in raged ?name) ega]:
;; COmmands ega angle, values are of type SR-command.

;; OutpUtl:
;; (statue-out (?driver ?name) l
;; Zndlcatae whether or not the driver ie on a_d ready. Of

;¢ type status-values (READy or RONE).

t; ?driver is BPLVD-(ox, fuel), K£VD or EGED.

;; (positlon-out (bplvd-{ox, fuel) ?name) lV)

Latch position measurement. Values .are of type

; ; open-close-values. Malntalne VALID-DATA predicate.

_ (analog-out (aged ?na_) _a;
Ega angle measurement, of type st-values. Maintains

; ; VALID-DATA predicate.

;; (thrust (me ?name))

;; Thrust from main engine. Type mr-values. (not sensed).

(: structure

;; Fuel and oxygen go to two latch valves, that feed two thruster valves...
(latch-valve (lv-ox ?name))

(latch-valve (lv-fuel ?name))
(multi(low-valve (me-ox-fuel ?name) (a b))

(flow-connectlon (input (me-ox-fual ?name) a) (output (Iv-ox ?name))}

(flow-connectlon [input (me-ox-fuel ?name) b) (output [iv-rue] ?name)))
;;... connected tO the main engine.

(main-engine (me ?name))

(flow-connection (oxygen-input [me ?name))
(OUtpUt (me-ox-fuel ?name) a))

(flow-connection (fuel-input (me ?name})

(OUtpUt (me-ox-fuel ?name) b))

;; The two latch valves are driven by separate bpl_d-ox and bplvd-fuel...
(split-bipropellant-latch-valve-drlver (b_Ivd-ox ?name) Iv-ox]

(split-blpropellant-latch-valve-drlver (bplvd-fuel ?name) iv-fuel)

(open-close-connectlon (cad-in (iv-ox ?name))
(cad-out (bplvd-ox ?name) Iv-ox))

(open-close-connection [cmd-ln (iv-fuel ?name))

(cad-out (bplvd-fuel ?name] Iv-fuel))

;; ,.. and sensed by the two BPLVDs.

(posltlon-sensor (Iv-ox-posltlon-senaor ?name)

[positlon-out (iv-ox ?name)))
(positlon-data-connection (posltion-ln (bplvd-ox ?name) Iv-ox)

[reading (]v-ox-position-aensor ?name)) (
(position-sensor {iv-fuel-position-sensor ?name)

(position-out (Iv-fuel ?name)))

(posltion-data-connectlon (posltion-in (bplvd-fuel ?name) Iv-fuel)
(reading (Iv-fuel-position-sensor ?name)))

;; The combined engine valve is driven by the M_VD. ,.

(maln-englne-valve-drlver (mevd ?name) me-ox-fuel)

(open-cloae-connectlon (cad-in (me-ox-fuel ?name))

;; "'should be signal-out not cmd-our - PN*"
(slgnal-out (mevd ?name) me-ox-fuel))

;; (cad-out (mevd ?name) me-ox-fuel)

;; Driw_ and sense the engine gimbal actuator through the EGE Driver.

(engine-gimbal-electronics-driver (eged ?name) ega)
(englne-gimbal-actuator (ega ?name))

(analog-ccmmumd-connectlon (cad-in (ega ?name))
(cmd-out [aged ?name) ega))

(continuous-sensor (age-angle-sensor ?name)

tangle-out [ega ?name)))

(analog-data-corLnection (analog-in (aged ?name) ega]
(reading (age-angle-sensor ?name))))

;t .*added the recovery facts and declarations - PN**
(:facts

(..,,
;; A ME branch is off if the latch valves are closed, and all drivers

;; associated with it are off

(if((me-branch-off ?name)
(ass

(closed (latch-valve (Iv-ox ?name)])

(closed (latch-valve (Iv-fuel ?name)))

(drlver-off (bplvd-ox ?name))
(drlver-off (bplvd-fuel ?name))

(driver-off (mevd ?name))
{driver-off (eged ?name))))

;; A ME branch is in early prep mode if the engine gimbal system Is

;;ready, and the bplvds are powered on
(if((me-branch-early-prep ?name}

(-._
(me-branch-ok ?name)

(drlver-on (aged ?name))

(driver-on (bplvd-ox ?name))

(driver-on (bplvd-fuel ?name))])
;; A ME branch has late prep if the latch valves are open, and early

;; prep has been done.

(if((me-branch-late-prep ?name)
(ama

(me-branch-early-prep ?name)
(driver-on [mevd ?name))

(open (latch-valve (lv-ox ?name)) }
(open (latch-valve (iv-fuel ?nasal))))

;; An NE branch is Ok if its latch and me valves are okay, its drivers

;; arm okay, the ega Is ok, and the maln engine itself is ok.
(if((me-branch-ok ?name)

(...q
(latch-valve-ok (]v-ox ?name))

(latch-valve-ok (iv-fuel ?name))

(as (open (multi(low-valve (me-ox-fue] ?name) (s b)))
(closed (mu]tJflow-valve (me-ox-fuel ?name) (a b))))

(drlver-ok (bplvd-ox 7name))

(driver-ok (bplvd-[ue] ?name))
(drlver-ok (mevd ?name))

(drlver-ok (aged ?name))

(ok (englne-gimba]-actuator (ega ?name)))

4/5

Printed by James Kuden

(ok (main-engine (me ?name))) })
)

}

(:declarations
(_ (me-branch-off ?name)

(me -branch -ear Iy-prep ?name)

(me-branch- Iate-prep ?name)
(me-branch-ok ?name))

)

)

::

;;; _aln Engine Domain Unit Schematic Description

::

; TO DO The main engine temperature sensor now eenee_ engine a.

;;; However it looks like the two engines are thermally connected

;;; by _he base plate. Also we need to add an overheat failure
;/; mode tO the engine.

;;; TO DO Need to hook the main engine up to a dynamics model, shared

;/; wlth the RCS.

;;; "*Changed defdevlce to de(module - P_."

(de(module Main-engine-system ()

;; Nodal of the main engine propulsion system

;; .Inputs:
; ; (power-cmd-ln ?device) :

Turns on or off the device. Values are ON, OFF, WO-CO%R_WD.

;; Also can be used to re_et a driver _f .ft becomes nneA_pectedly-off,
?device la bph, (BPLVD-(ox, fuel} {&,b}), (MEVD (a,b}), (EGED {a,b))

;; or (HELVD s) [no (HeLVD b)).

;; (cad-in ?driver ?device2

;; Commands device's state. Values are (OPEl4, CLOSE or NO-_).
;; If ?driver le (BPLVD-{ox, fuel) (a,b))

;; then ?device le lv-ox or Iv-fuel.

;; If ?driver 15 (MEVD {s,b)) then ?device is me-ox-fuel.
Zf ?driver is (HELVD a) then ?device la Iv-he. [no (HELVD b)].

;; (ca_-in (aged {a,b}) ega).
Commands ega angle, Values ere SR-command.

;; (asserted (pyro b)) :

Fires the main e_glne b pyres. Type predicate.

;; Outputs:
;; (Status-out (?driver (a,b)))

;; Indicates whether or not the driver is on and ready.

;; Of type status-values (READY or NONE),
;; ?driver ie BPLVD-{ox, fuel), MEVD or aGED.

;; "*changed lv to Iv-{ox, fuel) - PN*"
;; (poeitlon-out (bplvd-(ox, fuel) {a,b)) lv-(ox, fue]))

;; Poaitlon measur_ant, of type open-close-values. Nalntains

; ; VALID-DATA predicate.

;; (analog-out (aged (a,b}] ega)
Ega angle measurement, of type st-values. Ma_ntalna

; ; VALID-DATA predicate.

;; "tShould be (reading (tamp-out me)) rather than (tamp-out me) - PN*"

;; (reading (terns-out me)):

;; main engfne injector temperature measurement, tYPe
;1 st-values, VALID-DATA predicate.

;; (thrust (me (a,b)))
;; Thrust from main anglne. Type st-values. (not sensed).

(:structure

;; The propulsion subsystem

;; Helium tank ...
(hal lure-tank me-helium-tank)

;; ,.. controlled by one upstream helium high pressure latch valve.
(latch-valve (Iv-he a])

(flow-connectlon (output me-hellum-tank)

(input (iv-he a)))

;; helium pressure is dropped through a regulator ...
(helium-regulator Ires-he a))

;; "*Should be (rag-he a) rather than (he-rag a) - PN"

(flow-connectlon (output (Iv-he a)) (input (rag-he all)
;; (flow-connection (output (lv-he a)) (input (he-rag a)))

;; and feed by pipes ...

(pipe pipe-reg-to-ox)
(pipe pipe-rag-to-fuel)

;; **Should be (rag-he a) rather than (he-rag a) - PN"

(flow-connectlon-three (output (rag-he a))
(input pipe-reg-to-ox)

(input pipe-rag-to-fuel))
;;,.. into the fuel and oxidizer tanks.

(propel lent - tank ox- tank)

(propellent - tank fuel-tank)
(flow-connection (output plpe-reg-to-ox) (input 0x-tank))

(flow-connectlon (output pipe-reg-to-fuel) (input fuel-tank))

;; These tanks feed the a and b engines, and are controlled by

;; four latch valves. The b engine ie Inltial]y shutoff by

;; additional pyros,
[pyro-valve-normaliy-c]oaed (pyro-ox b))

[pyro-valve-normaily-closed (pyro-fuel b))

(main-englne-branch a)
{main-engine-branch b)

{flow-connactlon-three (output ox-tank)

(input (lv-ox a])

(input (pyro-ox b))]
(flow-connection-three (output fuel-tank)

(input (iv-rue] a))

(input (pyre-fuel b)))
(flow-connection (output (pyro-ox b))

(input (]v-ox hi))
(flow-connection (output (pyre-fuel b))

(input (Iv-fuel b)))

;; HELV Driver Circuitry

(helium-latch-valve-driver (helvd e) iv-he)
(open-close-connection (cmd-in (iv-he a)]

Ice,-out (helvd al lv-i-_))

:: Baoe Plate Heater, commanded dlrectly by the VDECU

Fnday September 10, 99

(latched-heater b_h)

;; Y_in _gfne tnJector temperature is currently Just hooked ¢o

;; ermine a, should it be measuring a combined t_reture o£ the
;; tWO main englnee?

(conttt'P_Mloila-aeTlaor (tamp-out cite}
(temperature (thermal-output (me a)) |])

(: fac _1

;; Commanding the pyrolr
{iff [open (c-rod-in (pyro-ox b)]|

(eamerted (]pTro b)))

;; ''changed pyro-ox to wro-fuel - PN**
(iff (open (cmd-in (]wro-fuel b))(

(aaserted (Wro b)))

I; Recovery recta
¢; NM-SYST_(-OF¥ correaponde tO everything in the main engine s_tem

; ; being off and cl oeed
(iff (ma-rjatem-o f f)

(..A
;; The He latch valve driver ie off, and the Me latch vaJve lw

;; closed
(driver-off (helvd a) }

(cloaed (latch-valve (Iv-he a} })

; ; each Of the main engine branches is off
(me-branch-off a)

(me-branch-off b)

;; and the latched heater is off

(off (latched-heater bph])))
; ; NE-REGULATED-BTPROP corresponds to the heiiuR 8yst_ being ready

(iff (me-regul a ted-blpr op |
(lu_d (ok (helium-tank me-heli%_m-tank)(

(open (latch-valve (iv-he a)))

(ok (helium-regulator (reg-he a}))
(ok (propellant-tank ox-tank))

{ok (propellant-tank fuel-tank) })}

;; ME-PROPELLANT-SYSTEM-OK makes _Jre that the hellum subsyatme and the

;; propellant tanks are operatlonal
(iff (me-pr opel Iant -sys tern-ok)

(--_ (ok (helium-tank me-helium-tank))

(drlver-ok (helvd a))

(latch-valve-ok (iv-he a})
(ok (heli_m-regulatoY (reg-he a))}

(ok (propellant-tank ox-tank))

(ok (propellant-tank fuel-tank))) (
; ; ME-SySTEN-READY corresponds to _he ME system being ready _0 burn.

;; We're assuming that we Just do a regulated burn, not a blowdown burn

(iff (me-system-ready)
(-."I (me-re_ulated-biprop)

(oz (me-branch-late-prep a)
(_ (me-branch-late-prep b}

(open (pyre-valve-normally-closed (pyro-ox b])|

(open (pyro-valve-normalIy-cloae4 (pyro-fuel b}))))

;; I'm assuming we need the BPH to be on. DO we need this?
(on (latched-heater bph))

;; I'm not going to say that the sensor _ust be working,

;; since we have only one sensor.
}!

;; ME-BURNING states chat the appropriate branch is burning
[forall ?me in (a b)

(iff (me-burnlng ?me)

(amd

;; we are in regulated biprop mode
(me- regu I ated-blprop)

;; ?me branch is ready

(me-branch-late-prep ?me)
;; and the mev iS Ope_.

{open (multiflow-valve (me-ox-fuel ?me) (a b}|))|)
(retell ?me in (e b)

(iff (me-failed ?me]

{not
(..A

;; the propellan£ subsystem is ok

(me-prope II ant -sys tem-ok)
;; the ?me branch is ok

(me-branch-ok ?me)))])
;; The helium latch valve isn't allowed to fail... We could decrease

;; its failure probability, but since its model is shared with the

;; other latch valves, it would be • bit of a pain.

(oz (open (latch-valve (iv-he a)))
(closed (latch-valve (Iv-he a))))

)
)

[:declaretlons

(ha
(asserted (pyre b))

(me-system-off)

(me-regu la ted-biprop }

(me-propellant-system-ok)
(me-system- ready)

(me -sys tera-low-power (
(forall ?me In (a b) (me-burning ?me))

(forall ?me in (a b} (me-failed ?me])
)

)

Printed by James Kurien

Friday September 10, 99 5/5

